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Abstract 

Almond (2006) argues that in utero exposure to the 1918 influenza pandemic reduced the 

1919 birth cohort’s adult socioeconomic status (SES). We show that this cohort came 

from lower SES families, which is incompatible with Almond’s cohort comparisons 

identification strategy. The adult SES deficit is reduced after controlling for background 

characteristics; it is small and statistically insignificant in models that include household 

fixed effects. Replicating Almond’s state-level dose-response analysis, we find no 

evidence in census data that influenza exposure reduced adult SES. Evidence from a 

city-level dose-response analysis on educational attainment using WWII enlistees from 

287 cities is mixed.  
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1. Introduction 

In a seminal paper, Almond (2006) provides important evidence on the fetal origins 

hypothesis (Barker, 1990) by leveraging the 1918 influenza pandemic to identify the causal effects 

of shocks to the in utero environment on socioeconomic status (SES) in adulthood. Arguing that 

the pandemic was severe, unexpected, and temporary, he used two identification strategies. The 

first, a cross-cohort approach, compares outcomes of the 1919 birth cohort who were in utero at the 

time of the 1918 pandemic with outcomes of comparison cohorts (1912-1922). The second, a 

dose-response approach, uses maternal mortality rates as a proxy for intensity of exposure to make 

within-cohort comparisons. Drawing on results from both approaches, Almond concludes that 

SES in adulthood was reduced by in utero exposure to the pandemic. 

Almond (2006) is widely-cited and considered definitive evidence on the lasting effects on 

SES of in utero influenza exposure, in particular, and fetal health shocks in general. Our 

re-evaluation of the evidence is motivated by three facts. First the results have powerful 

implications for science and policy, particularly during the SARS-COV-2 pandemic which has 

brought increased focus and salience to understanding the long-term and persistent economic 

impact of a health shock experienced while in utero. The global interest in the evolving 

understanding of the impacts of SARS-COV-2 highlights the critical importance of getting the 

science right. Second, there is a substantial body of rigorous evidence establishing that, unlike in 

the case of certain long-term health issues, early life disadvantage is not immutable when 

considering adult economic outcomes. This provides a theoretical foundation for why one might 

not expect to find adult SES deficits for children exposed to an in utero health shock (Heckman, 

2006). Third, the co-incidence of the pandemic and World War I (WWI) raises legitimate concerns 

regarding potential omitted factors that confound Almond’s conclusions.  
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The U.S. declared war on Germany in April 1917 and started deploying large numbers of 

troops to Europe in the summer of 1918, as shown in Figure 1. Military deployments (dark blue 

bars) rose dramatically in the last half of 1918, peaked at the end of the year, and declined slowly 

during the first three months of 1919. The solid black line in Figure 1 plots influenza deaths 

recorded in vital statistics registration areas. The overlap in timing is striking. Further, men who 

served in WWI tended to be positively selected on SES relative to the general population so that 

men who remained in the U.S. were negatively selected and more likely to be fathers of those born 

during the 1918 pandemic.1 Moreover, there is evidence that fertility patterns were affected by 

both the war and the pandemic (Chandra et al., 2018; Kitchens and Rodgers, 2020; Mamelund, 

2004; Vandenbroucke, 2014). These findings suggest that parents of children born during or after 

the pandemic may have been different from parents of children born before the pandemic. This 

raises questions about the exchangeability of the 1919 and surrounding cohorts and, therefore, the 

validity of Almond’s cohort-comparison identification strategy. 

We document that these are more than theoretical concerns. Parents of the 1919 birth 

cohort have lower SES than parents of surrounding cohorts. The 1919 birth cohort was more likely 

to be nonwhite, to be born in the South, and their fathers were more likely to be illiterate and work 

in lower SES occupations. We find evidence of this selection in three data sets: the 1960 census 

(analyzed by Almond), the full-count 1920 census and WWII enlistment records linked to the 1930 

census. Taken together, these data do not support the assumption that the 1919 and comparison 

                                                 
1This selection is driven by several factors. First, WWI was the first war in which a U.S. citizen was not allowed to hire 

a proxy to serve in his place, ruling out the possibility of the upper class buying their way out of service. Second, men 

were placed in a lower priority draft group if their family had little financial support apart from himself, because the 

family would have “insufficient” income to sustain itself if he were drafted (Nudd 2004). Finally, deferments were 

awarded for health reasons and so the less healthy were less likely to be drafted. 
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cohorts are exchangeable, which is necessary for the validity of the cross-cohort identification 

strategy.  

Four approaches are used to assess the degree to which parental selection affects 

conclusions regarding the 1919 birth cohort deficit in adult SES. First, models of adult SES 

reported by Almond are extended by drawing on a set of background characteristics in the 1960 

census. Second, aggregate proxies for parental SES are constructed from the 1920 census and 

included in Almond’s models. Third, using WWII enlistment records linked to the 1930 census, 

we control for individual-specific parental characteristics. Fourth, household fixed effects are 

included for a subsample of links to absorb all shared time-invariant parental characteristics of 

brothers. Regardless of the approach, estimates of the 1919 deficit are attenuated when we take 

into account observed background characteristics. When unobserved differences in parental 

characteristics are taken into account, the magnitude of the estimates becomes even less 

economically meaningful and none is statistically significant. We conclude that failure to take into 

parental selection is critical.  

Even after controlling for heterogeneity in parental composition, it is important to note that 

other potential sources of bias potentially remain in the cross-cohort approach that are particularly 

salient for pregnant women. For example, elevated stress in utero has been linked to worse birth 

outcomes (Brown, 2020; Mansour and Rees, 2012). In addition, as a result of war-induced 

increases in food prices and the initiation of the national food conservation campaign, the mothers 

of the 1919 cohort may have experienced reduced food intake while pregnant, which has been 

linked to chronic health deficits in adulthood (Roseboom et al., 2006; Rotwein, 1945).2 Moreover, 

the mobilization effort may have caused elevated stress among pregnant women. With those 

                                                 
2
Famine in Allied countries triggered the “Food Will Win the War” campaign in the U.S., which urged citizens to 

restrict their consumption of meat, wheat, fats, and sugars. 
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confounders in mind, we exploit information on quarter of birth of the 1919 birth cohort and 

document that quarter by quarter SES deficits in adulthood do not line up with the precise timing 

implied by in utero exposure during the Fall 2018 wave of the pandemic. These results provide 

further evidence against interpreting estimates based on the cross-cohort strategy as causal.  

Almond’s second strategy is designed to identify a dose-response effect and potentially 

addresses these concerns. He reports statistically significant negative dose-response effects for 

males in the 1960 census but not in the 1970 or 1980 censuses. Our replication of his approach 

documents two data errors. After correcting the data, we find that of the 15 estimates for males, 

only two are negative and statistically significant at the 5% level (in the 1960 census) and two are 

positive and significant (in the 1970 Census). Further, of the 30 estimates for females and 

non-whites, the only statistically significant estimate is positive. Overall, this approach does not 

provide consistent evidence of a negative dose-response effect. 

The final part of this paper extends the dose-response framework to provide new evidence 

on the lasting consequences of in utero exposure to the pandemic. Digitization of the entire 1920 

and 1930 U.S. censuses allows us to construct an individual-level data set linking World War II 

enlistment records to the censuses so the enlistee’s residence is known as of the census 

enumeration date. That information is used to construct city-specific measures of pandemic 

exposure for 287 cities. Linking makes a trade-off between population representativeness and 

precision. Specifically, compared with the 1960 census, the linked sample only contains males and 

they are more likely to be white and have foreign born parents.  

An advantage of our city-level dose-response analysis is that the correlation between 

background characteristics and city-level pandemic intensity is weak, suggesting parental 

selection is unlikely to be an important source of contamination when using this approach. Our 



5 

 

estimates from this model indicate that exposure to greater pandemic intensity lowered 

educational attainment when using the 1912-1918 birth cohorts as comparisons, even when 

restricted to differences between brothers in a household fixed effects model. On the other hand, 

when we restrict the analyses to the 1918-1919 birth cohorts, to help rule out unobserved 

differences across cohorts, none of the estimates is statistically significant.  

Section 2 of this paper evaluates the cross-cohort identification strategy. After 

documenting negative selection of the 1919 birth cohort’s parents, estimates of cohort effects are 

reported that adjust for background in four different ways and estimates that exploit the quarter of 

birth are provided. Section 3 re-evaluates the dose-response identification strategy. We first 

replicate Almond’s results using his state-level maternal mortality measure and then use city-level 

variation with the linked data. The evidence presented here integrates results reported in Brown 

and Thomas (2021, henceforth BT) and Beach, Ferrie and Saavedra (2021, henceforth BFS).  

 

2. Assessment of cross-cohort evidence 

2.1 Adult SES of the 1919 birth cohort 

Using the 1960, 1970 and 1980 censuses, Almond contrasts indicators of SES in 

adulthood, yi, for the 1919 birth cohort against the 1912-1922 cohorts by estimating:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑌𝑂𝐵 + 𝛽2𝑌𝑂𝐵
2 + 𝛽3𝟏[𝑌𝑂𝐵 = 1919] + 𝜖𝑖     [1] 

where YOB is year of birth and 1[YOB=1919] is an indicator for the 1919 birth cohort.3  

                                                 
3The samples analyzed are: a nationally representative 1-in-100 random sample of the population for 1960, a 3-in-100 

sample for 1970, and a 5-in-100 sample for 1980. All samples are available at IPMUS.org, although the 1970 sample 

is constructed by combining the three (independent) 1% samples of the Form 1 data (Ruggles et al, 2021a). IPUMS 

took 6 independent 1% samples of the 1970 census (three from the Form 1 data and three from the Form 2 data). The 

three “within-form” samples are classified as “State”, “Metro”, or “Neighborhood”, based on the identifiable 

geographic information made available in the sample. The Form 1 vs. Form 2 designation corresponds to which census 
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Table 1 presents estimates of the deviation from trend for the 1919 birth cohort, 3, for 

males in 1960 from Almond (2006), in column 1, and our replication in column 2.4 Relative to 

those born in surrounding cohorts, males born in 1919 are significantly less likely to have 

graduated from high school, completed fewer years of education, have lower wage income, are 

more likely to be poor and have lower Duncan’s Socioeconomic Index (SEI) scores, an indicator 

of SES that is based on the occupation of the individual.  

As shown in columns 2 and 3, the conclusions are generally robust to narrowing the 

comparison cohorts. Column 3 excludes the 1920-1922 birth cohorts to address concerns that 

conceptions after October 1918 may be related to the pandemic (Boberg-Fazlic et al., 2021). 

Estimates of 3 are similar to those using the 1912-1922 cohorts, although the standard errors are 

larger. For years of education, high school graduation, and the SEI indicator we continue to find 

statistically significant deficits. For total income the point estimate is similar but no longer 

statistically significant. For wage income and whether the individual is below 1.5 times the 

poverty level, the estimates are smaller and statistically insignificant. Column 4 further restricts 

the comparisons to the 1915-1918 birth cohorts, all of whom were under the age of 5 when the 

pandemic struck and were thus unlikely to have their schooling disrupted by the pandemic. This 

restriction is also useful as age is reported in years and months for these cohorts, which allows us 

to corroborate our cohort size with data from the vital statistics to rule out the possibility that 

results are driven by misreporting age (including heaping on preferred digits). In this sample, most 

1919 birth cohort deficits are even larger in magnitude relative to the 1912-1922 comparisons, 

although the standard errors are larger because of the smaller sample sizes. 

                                                                                                                                                             
form the individual received. Almond (2006) uses Form 1 data because respondents were asked about their disability 

status. 
4The differences likely reflect differences in the public release versions of the IPUMS samples. 
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2.2 Parental SES of males in the 1919 birth cohort 

A necessary condition for these estimates to be interpreted as causal is that the 1919 and 

comparison cohorts are statistically exchangeable. This condition is rejected if, for example, 

parental SES of the 1919 birth cohort is different from that of the comparison cohorts. Figure 2 

speaks to this question. Panel A replicates Almond’s Figure 1 showing that the 1919 birth cohort 

completed less education than predicted by trend. Panels B, C, and D display paternal 

characteristics for males by birth year from 1912 through 1919, drawing on the full count of the 

1920 Census (Ruggles et al, 2021b). 

Relative to the comparison cohorts, fathers of the 1919 birth cohort have lower SES: they 

are less likely to be literate (panel B), have lower average occupation income scores (panel C) and 

score lower on Duncan’s socio-economic index, SEI (panel D). This evidence of negative paternal 

selection on characteristics that are known to predict the SES of their children casts doubt on the 

exchangeability assumption. 

To directly test that assumption, model [1] is re-estimated replacing the dependent 

variable, adult SES, with background characteristics. If the coefficient on the 1919 birth cohort 

indicator is statistically significant, the exchangeability assumption is rejected and the estimate of 

3 in [1] cannot be interpreted as the causal effect of in utero influenza exposure on adult SES. 

Estimates are reported in column 1 of Table 2 using the paternal SES indicators displayed in 

Figure 2 in addition to other background characteristics from the 1920 Census. Relative to fathers 

of the 1912-1918 birth cohorts, fathers of the 1919 cohort have significantly lower SES: they are 

less likely to be literate, have a lower Duncan SEI score, and work in professions with a lower 

occupation-income score. The fathers are also more likely to be born outside the U.S. and are 

slightly less-likely to be second-generation immigrants. The 1919 birth cohort are less likely to 
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live in a family-owned home and more likely to be non-white, born in the south, and have older 

fathers and more older siblings. All of the estimated differences in column 1 of the table are 

significantly different from zero.  

Age heaping is a legitimate concern in the 1920 Census (Myers, 1954; Coale 1955; 

A’Hearn et al 2009). If less educated parents are more likely to heap on preferred digits, it is 

possible that heaping could explain the results comparing the 1912-1919 cohorts. Birth registration 

data were first collected in the U.S. in 1915 and allows us to compare vital statistics with the 

number of births reported in the Census, taking into account age- and state-specific mortality 

through 1919 as well as changes in the states covered by vital statistics. As described in BT, there 

is a very high degree of concordance in the number of children alive at the date of the 1920 Census 

according to the Census and vital statistics data for each of the 1915-1919 birth cohorts.5 

Assuming this concordance applies to cohorts born outside the registration states, we can shield 

our estimates from age heaping concerns, by restricting attention to the 1915-1919 cohorts. Those 

results appear in column 2. The patterns of negative selection characterizing the 1912-1918 

comparisons are replicated in 1915-1918 comparisons except that paternal occupation income 

scores are not significantly different and fathers of the 1919 cohort are more likely to be second 

generation immigrants. From these estimates it is clear that age heaping does not explain the result 

that the 1919 birth cohort is negatively selected.6 

                                                 
5
Age is less likely to be heaped on years for these cohorts in the 1920 Census because it is reported in both years and 

months whereas, for older cohorts, age at last birthday is only reported in years. 
6
Drawing on the 1930 Census, BT shows that extending the comparison cohorts to include 1920-1922 does not affect 

the conclusion that the 1919 birth cohort is negatively selected. The disadvantages of using the 1930 Census is that the 

age measures are not well-suited for precise cohort definitions, because age is reported in years as of April 1, 1930, and 

there is a long hiatus between birth of the child and measurement of paternal characteristics.6 See Thomas (2010) and 

BT for details.  
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A second potential concern is that parental differences in early childhood will have 

disappeared by adulthood if the mortality-SES gradient is large enough. We therefore turn to 

background indicators reported in the 1960 Census. As shown in columns 3 and 4 of the table, 

among those who survived to 1960, fathers of the 1919 birth cohort are not more likely to be 

foreign-born indicating lower survival for those children. This contrast was reported by Almond 

for the 1912-1922 cohorts and he concluded that this indicated there was no evidence that the 1919 

birth cohort was different from the comparison cohorts. However, for both sets of cohort 

comparisons those born in 1919 are more likely to be non-white and born in the South, two 

powerful predictors of adult SES. Moreover, the estimates in columns 1 and 3 (for the 1912-1919 

cohorts), are very similar indicating that selective mortality does not contaminate our conclusions 

based on the 1920 Census. Contrasting columns 3 and 4, the estimated gaps are smaller for 

nonwhite and Southern born when the 1920-1922 cohorts are included in the comparison, 

indicating fertility selection in the post-1919 birth cohorts.  

Third, we use a linked sample of the 1912-1922 birth cohorts who are observed first as a 

child with their parents in the 1930 Census and again as an adult. For the adult observation, we 

follow Parman (2015) and use World War II (WWII) enlistment records. Since enlistment peaked 

in 1942, using WWII enlistment records increases the odds that we are observing completed 

education for the youngest cohorts, who would have only been about 18 at the time of census 

enumeration in 1940.7 This sample also avoids concerns about selective mortality prior to 

enlistment.  

                                                 
7An additional advantage of the WWII enlistment records is that enlistees were asked their year of birth rather than 

their age. The 1930 and 1940 censuses only ask an individual’s age at the time of enumeration (April 1), which 

complicates one’s ability to identify members of the 1919 birth cohort. 
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We refer to our sample as linked because there is not a unique identifier that maps 

individuals across censuses and to the WWII enlistment records. We focus on men who can be 

uniquely identified by their place of birth, first name, last name, and age. Our linking procedure 

builds upon earlier work (Long and Ferrie, 2013; Beach et al. 2016) and follows the best practices 

discussed by Bailey et al. (2020) and Abramitzky et al. (2021). After standardizing all given names 

(e.g., recoding “Ed” and “Eddie” as “Edward”) in both data sets, each enlistment record is matched 

to every census records where the individual is of the same race, born in the same state, born within 

three years, and has a reasonably close name.8 A successful enlistment-to-census link is one where 

only one census record satisfies the above criteria.9 We restrict attention to the subset of those 

links whose age is consistently reported across the two sources. While the enlistment records asked 

individuals to report their birth year, birth year in the 1930 census has to be inferred from the 

reported age as of April 1, 1930. Thus, the inferred birth year must match the enlistment records or 

be off by 1 year. Requiring consistency mitigates concerns about misreported ages and birth 

years.10 

                                                 
8Names are classified as reasonably close if: 1) the standardized first name initial matches, 2) the last name initial 

matches, and 3) the Jaro-Winkler string distance between the raw first names and raw last names are between 0.8 and 

1. The Jaro-Winkler string distance imposes a penalty for the number of character changes to move from one string to 

the other. A Jaro-Winkler string distance of 1 implies that the two strings are an exact match. The use of the 

Jaro-Winkler string distance allows us to relax the “exact name match” criteria and accommodate spelling variants 

among last names (e.g., Andersen and Anderson) and any minor transcription errors that may have occurred during the 

process of digitizing the original handwritten records. 
9We assess the false positive rate of our algorithm by modifying records in the full census sample to incorporate the 

types of spelling errors, transcription errors, and misreporting of birth years outlined above and in Goeken et al., 

(2017). Using our algorithm to link from the original census to the modified census yields a successful match rate of 

36.5 percent and a false positive rate of 1.8 percent. 
10Some young men intentionally misreported their birth year in order to meet the minimum age requirement for 

enlistment. This is unlikely to be an issue in our setting, as most enlistment occurred between 1941 and 1944, when the 

youngest cohort (1922) would have been between 19 and 22 years old. Moreover, while intentional misreporting 

complicates our ability to obtain a unique link in the enlistment records, those men would not appear in our sample 

unless their parents misreported the child's age in 1920 or 1930 in the exact same way. Related, the age heaping 

phenomenon may affect our ability to link to the census, but is unlikely to affect our sample since the enlistment 

records asked for birth year. 
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This linked sample of males is not representative of the U.S. population for males for two 

reasons. First, WWII enlistees were a non-random subset of the male population.11 One direct 

selection mechanism is that registrants could be rejected for failing to meet the minimum 

education or physical standards. Second, those who consistently report their names and birth years 

are more likely to be linked to their childhood record. Nonetheless in columns 5 and 6 of Table 2, 

we find that the 1919 birth cohort is significantly different from the comparison cohorts for all 

indicators other than home ownership when using the linked enlistee data. Contrasting the 

estimates for the 1912-1919 cohorts (in columns 1, 3 and 5), we see that the loss of 

representativeness in this selected sample of enlistees leads to smaller estimates of 3 than in the 

1920 and 1960 Censuses.  

All the evidence in Table 2 points in one direction: relative to the comparison birth cohorts, 

the 1919 cohort came from lower SES environments. The pattern of negative selection does not 

depend on the choice of comparison cohorts or the data source. The result is important: by 

rejecting the exchangeability assumption, the 1919 birth cohort deficits in Table 1 cannot be 

interpreted as identifying the causal effect of in utero influenza exposure on adult SES. 

2.3 Adult SES of males in the 1919 birth cohort conditional on background 

This sub-section documents that the estimates of the 1919 birth cohort deficit in adult SES 

reported in Almond (2006) are overstated when background differences are not taken into account. 

We use four complementary approaches that essentially modify equation [1] by including controls 

for background differences, P: 

𝑦𝑖 = 𝛾0 + 𝛾1𝑌𝑂𝐵𝑖 + 𝛾2𝑌𝑂𝐵𝑖
2 + 𝛾3𝟏[𝑌𝑂𝐵 = 1919] + 𝛾4𝑃 + 𝜈𝑖    [2] 

                                                 
11A comparison of WWII veterans and non-veterans in the 1950 census indicates that veterans were younger, whiter, 

and slightly less likely to have U.S.-born parents than non-veterans (BFS, 2021, P.21). 
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Our first approach uses the 1960 Census, adjusting for four background characteristics in 

those data: race, birthplace, mother’s birth country, and father’s birth country. 

Our second approach incorporates information from the 1920 census. This method 

includes race and state of birth fixed effects, but since it is not yet possible to attach 

individual-level data from the 1920 census to the 1960, 1970, or 1980 censuses, proxies must be 

constructed for paternal characteristics. For each characteristic, the proxy Pbsr is the average over 

all children born in each state, 𝑠, and year of birth, 𝑏, calculated separately by race, 𝑟, 

distinguishing whites and nonwhites.  

Our third set of estimates draws on the linked enlistee data set. With this data we can 

include all of the same background characteristics used in our 1920 Census proxies model but 

measure them at the individual level. This approach should increase the precision of our estimates, 

albeit at the cost of a selected sample that understates the level of parental selection in the 1919 

birth cohort. Using the linked enlistee data also allows us to include the 1920-1922 birth cohorts 

and rule out selective mortality as a potential confounder.  

All of the previous methods control for differences in background using observed 

characteristics or proxies. Our final approach exploits two features of the enlistee data: many 

brothers enlisted in WWII, and we are able to identify brothers if we observe them in the same 

household in 1930. Using this information, we estimate models using the linked enlistee data that 

additionally include household fixed effects. These estimates have the key advantage that they 

control for both individual specific observed characteristics and the unmeasured background 

characteristics that are shared by brothers. 

For the sake of brevity, results reported in Table 3 focus on two human capital indicators of 

males: high school graduation (columns 1 and 2) and years of education (columns 3 and 4). For 
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each outcome we present unadjusted estimates of the 1919 birth cohort gap, �̂�3 (columns 1 and 3) 

and adjusted estimates, 𝛾3 (columns 2 and 4). As shown in panel I, adjusting for the limited 

characteristics measured in the 1960 Census reduces the estimates but they remain significantly 

negative. However, as shown in panel II, broadening the set of background controls, albeit with 

proxies, produces estimates that are smaller in magnitude and none of the estimates is statistically 

significant at the 5% level.  

Panel III presents results from the linked enlistee sample. Inclusion of background 

characteristics reduces the point estimates by more than 40%, but the estimates remain significant 

at the 5% level. In panel IV, however, we take into account both observed and unobserved 

background characteristics by including household fixed effects. Neither of the estimates of �̂�3 is 

statistically significant nor economically meaningful. For example, the adjusted gap for years of 

education is 0.028.12,13 

Using either individual-specific background characteristics or proxies, the point estimates 

of the 1919 birth cohort deficits in education are reduced by between 25 and 80%. There are almost 

surely also unobserved differences between the 1919 and comparison birth cohorts and when we 

                                                 
12

Since proxies for background are noisy indicators of own background, those estimates are likely to overstate the 

magnitude of the 1919 birth cohort deficit. We have checked this potential bias using the enlistee data. Relative to the 

uncontrolled deficits for high school graduation and years of education, controlling with proxies reduces the deficit by 

about 10%. Controlling own parental characteristics further reduces the estimated deficits by 35 to 50%. While these 

magnitudes may reflect less variation in the background of enlistees relative to the population, they do suggest the 

estimates in panel II of Table 3 are upward biased. 
13

None of the results in Table 3 include a control for the total number of children in the household. The total number of 

children in the household is a function of the number of older siblings and the number of younger siblings in the 

household. Our birth order control captures the older siblings component of that variable. BT present results 

controlling for the total number of children (as observed in 1920) and find evidence that the 1919 birth cohort was of 

higher adult SES than the comparison cohorts. For example, in the 1960, 1970 and 1980 Censuses, males have 

completed 0.27 (se=0.06), 0.25 (se=0.04) and 0.26 (se=0.03) more years of education than males in the 1912-1918 

cohorts, respectively. It remains an open question whether this pattern tells us something about parental selection and 

investments in the 1919 birth cohort or whether the results are driven by incomplete fertility of parents of the later 

cohorts, particularly the 1919 birth cohort. 
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control for both observed and unobserved background characteristics, neither of the 1919 deficits 

is statistically significant or economically meaningful.  

We have focused on two indicators of education of males. However, in support of his 

conclusion, Almond reports results for a broader set of indicators of adult SES for males, females 

and non-whites. These include four additional income and education-related indicators of SES in 

the 1960 census as well as the same six measures plus four more indicators (two that are 

income-related and two that are health-related) reported in the 1970 and 1980 censuses. Relative to 

using the enlistee data, an important advantage of the proxy approach to measuring background, is 

that the same SES indicators can be examined for males, females and non-whites in all three 

censuses (BT).  

Considering all 26 estimates of the 1919 birth cohort gap for males, relative to the 

1912-1918 cohorts, eight are negative and statistically significant while one is significantly 

positive in models that do not adjust for background. Adjusting for background with proxies 

reduces the magnitude of the estimated deficit for all but two estimates. Furthermore only two of 

the 26 estimates are significant: one is negative indicating a deficit whereas the other is 

significantly positive, indicating an advantage relative to the comparison cohorts. 

The patterns for females are similar. Four of the unadjusted estimates indicate a significant 

deficit while two indicate a significant advantage; adjusting for background, two indicate a 

significant deficit and three indicate a significant advantage. Among nonwhites, none of the 

unadjusted estimates is statistically significant and the only adjusted estimate that is significant 

indicates the 1919 birth cohort had higher adult SES than the comparison cohorts. These results do 

not support the conclusion the 1919 birth cohort had a significant deficit in adult SES.  

2.4 Using quarter of birth to evaluate the cross-cohort identification strategy 
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This section examines an alternative approach that can provide supplementary evidence 

concerning the validity of the cross-cohort identification strategy. This analysis exploits 

information on timing of births and examines the pattern of deficits at the quarterly level.  

The majority of influenza cases in the United States during the pandemic occurred over the 

last four months of 1918. While, the United States suffered a subsequent influenza outbreak in the 

Spring of 1919 and the virus lingered in some areas for considerably longer, the scale of those 

incidents are generally below what occurred during the fall of 1918. If the 1919 deficit were driven 

primarily by in utero exposure during the fall wave, then we would expect the deleterious effects 

on adult outcomes to be greatest for those born in the first two quarters of 1919 and smallest for 

those born in the fourth quarter of 1919.  

Table 4 explores whether the cohorts exposed in utero during the fall wave drive the 1919 

birth cohort’s worse socioeconomic standing as adults. Panel A displays the deviation from trend 

in completed years of education for the 1919 birth cohort relative to the 1915-1918 birth cohorts. 

Then in panel B, quarter of birth fixed effects and four 1919 birth quarter indicators, which replace 

the single 1919 birth cohort indicator, are added to the model.  

The results of this exercise do not align with the temporal composition of effects that would 

be expected if the reported deficits to adult SES were purely a result of in utero influenza exposure 

to the fall wave of the pandemic. All of the quarterly estimates are statistically equal and the results 

of Table 4 indicate that if anything the deficit was most pronounced among those born in the fourth 

quarter 1919, i.e. those conceived after the fall wave. 

2.5 Summarizing the cross-cohort identification strategy 

We have established that the 1919 birth cohort is negatively selected on parental 

characteristics. This fact invalidates the assumptions necessary to interpret the cross-cohort results 
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presented in Almond (2006) as causal. Moreover, we have shown that taking this selection into 

account is important. The magnitude of the estimated adult SES deficit of the 1919 birth cohort is 

reduced in all models that include observed background controls and when estimates take into 

account both observed and unobserved characteristics, the deficit is not statistically different from 

zero. Fine-grained analyses that focus on quarter of birth provide little evidence that the deficit in 

adult SES found for the 1919 birth cohort fits the temporal pattern expected if it was solely 

capturing in utero pandemic exposure during the fall wave. 

Our results cast doubt on the identifying assumptions necessary to successfully implement 

a cross-cohort strategy to recover the causal effect of in utero exposure to the 1918 pandemic on 

long-run outcomes. Moreover, these issues are not only relevant for the U.S. context, as similar 

concerns arise with other studies that use the cross-cohort strategy in other countries (see BT and 

Vollmer and Wójcik, 2017). Overall, our conclusions imply that in order to make progress on 

understanding the persistent impact of in utero exposure to the influenza pandemic we need an 

alternative estimation strategy that relies on variation that can plausibly be considered 

quasi-random.  

 

3. Re-assessment of Dose-Response Approach 

3.1 Replication of Almond’s Results  

The second approach used in Almond (2006) to identify the causal effect of in utero 

exposure to the pandemic exploits spatial and temporal variation in virulence of the influenza 

pandemic. Restricting attention to the 1918 through 1920 birth cohorts in order to isolate the effect 

of fetal exposure, he investigated how each adult outcome, yi, varies with a function of year- and 
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state-specific maternal mortality rates in the year before birth, t-1 that he used to estimate the 

maternal infection rate, MIR:  

𝑦𝑖 = 𝛼0 + 𝛼1𝑀𝐼𝑅𝑠,𝑡−1 + 𝜇𝑠 + 𝜇𝑡 + 𝜖𝑖𝑠𝑡    [3] 

where yi is adult SES, 𝜇𝑠 and 𝜇𝑡 are state and birth year fixed effects, respectively. 

Using the 1960 Census, Almond reports statistically significant negative dose-response 

effects for three of five SES indicators for males (high school graduation, year of education and log 

of total income). He comments that the 1970 census estimates for males “do not approach 

statistical significance” and the “1980 estimates are about half as large as the corresponding 1960 

effects” (Almond, 2006, p. 706).  

BT replicate these results after correcting two data issues. Almond assigns an MMR of 6.3 

for Virginia in 1919 whereas the rate recorded in US PHS (1947) is 8.3. BT also use data from 

Washington D.C. which is recorded in the same source but was not used in Almond’s analysis. 

After correcting those errors, only two of the five SES indicators are significantly related to MIR 

(Table 5, col 1). Results for males in the 1970 and 1980 Census are reported in columns 2 and 3 of 

Table 5, respectively. Whereas in 1960, males who were born in states with higher levels of excess 

maternal mortality are significantly less likely to have graduated from high school and completed 

significantly fewer years of education, by 1970, as shown in column 2 of Table 5, the 

dose-response estimates indicate these same males are no less likely to have graduated from high 

school and report having completed significantly more years of education. The reason for the 

reversal of the results is unclear. The difference between the 1960 and 1970 census estimate is 

more than a year of education and it is very unlikely that these men completed more years of 

education in their forties. Moreover, in 1970, the dose-response estimates indicate males are also 
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significantly less likely to be poor. By 1980, none of the dose-response estimates is statistically 

significant (Table 5, column 3). 

Estimates for females and nonwhites are displayed in panels B and C of Table 5, 

respectively. The only significant estimate (of 30 estimates) indicates that nonwhites born in states 

with higher levels of excess maternal mortality had higher SES in 1970.  

This evidence does not support the conclusion that there is a significant negative dose 

response effect using the approach taken by Almond. Specifically, of 45 estimated coefficients 

only two indicate a statistically significant negative link between adult SES and excess maternal 

mortality and those estimates are not consistent over time. In contrast, three of the estimates 

indicate that the link is significantly positive. Given the number of comparisons, it is appropriate to 

adopt a testing procedure that takes into account the multiple comparisons in these analyses 

(Hochberg, 1988). In that case the evidence indicates that variation in the intensity of exposure to 

the 1918 influenza pandemic in utero has no statistically significant impacts on SES in adulthood.  

3.2 Extending the dose-response approach 

This section extends the dose-response framework to assess whether within-cohort 

comparisons are a viable path to identifying the causal effect of in utero exposure to the pandemic. 

While the cross-cohort framework asks whether individuals born in 1919 performed worse than 

individuals from adjacent birth cohorts, the dose-response framework goes further by asking 

whether the impact was larger for individuals from areas where the pandemic was more 

widespread. This additional comparison narrows the set of threats to identification, as the 

identifying assumption is that other key factors of long-run outcomes do not vary with the intensity 

of pandemic exposure. The results in Section 3 highlight the need for new dose-response evidence, 

in turn motivating the remainder of our paper. 



19 

 

3.3 An Improved Measure of Exposure 

Our linked data allow us to derive a more localized measure of pandemic exposure. We 

apply our same linking algorithm to link male WWII enlistees to the 1920 census. Next, we 

assume that the city of enumeration in 1920 is the same as the individual's in utero environment. 

We then construct a measure of pandemic intensity based on city-level influenza deaths, published 

in the Census Bureau's “Mortality Statistics” publications starting in 1900. Although the data only 

include information for Registration states and cities, this data source allows us to leverage 

variation from nearly 300 cities.14 

One concern is that influenza mortality captures more than the severity of the pandemic.15 

Clay et al. (2018) show that during the pandemic, mortality rates were higher in places with more 

coal pollution and worse water quality. These relationships may be attributable to the fact that air 

pollution and poor water quality compromise an individual's immune system, making them more 

susceptible to influenza. Thus, observing high influenza mortality rates in 1918 could mean that a 

city was hit relatively hard by the pandemic, that a city had relatively worse water and air quality, 

or some interaction of the two. This is concerning since early-life exposure to air pollution 

(Sanders, 2012; Isen et al, 2017) or poor water quality (Beach et al, 2016) also impairs human 

capital development. 

Our solution is to generate a counterfactual estimate of influenza mortality in 1918. To do 

so, we transcribe all city-level mortality statistics spanning 1900-1930 from the annual Mortality 

                                                 
14Registration states and cities are those with laws requiring that mortality statistics be collected. In 1900 the Census 

Bureau worked with those areas to establish uniform reporting standards. The result of this was the adoption of a 

standardized death certificate and the international classification standard, as well as the distribution of “The Manual 

of International Classification of Causes of Death,” which cross referenced terms appearing in causes of death from 

1890 and 1900 reports with the new uniform classification standard. 
15When the 1918 influenza strain killed it tended to kill quickly. Accordingly, influenza fatality rates track the case 

rates reasonably well on a weekly basis but with a 2-3 week lag (See BFS Appendix Figure 4). This lag is unlikely to 

matter for our analysis, which uses an annual measure of mortality. 
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Statistics reports. We then run a series of city-level regressions where we restrict the sample to the 

1900-1917 period and regress ln(influenza deaths) on a city-specific linear time trend.16 Taking 

the exponential of the predicted values from this regression yields a prediction of influenza 

fatalities in the absence of the pandemic for post-1917 years.17 Subtracting predicted influenza 

deaths in 1918 from actual influenza deaths in 1918 gives us the unanticipated increase in 

influenza mortality due to the pandemic. Our options to normalize this measure are to divide by 

population or to divide by predicted influenza deaths. While the two numbers are correlated, 

dividing by population ignores the fact that cities of similar sizes may have different underlying 

disease and pollution environments. Because of this, and also because accurate population data are 

only available in census years, we use predicted influenza deaths as our denominator. 

Mechanically this measure is simply the ratio of unexpected influenza deaths occurring in 1918 

relative to the number of expected influenza deaths in 1918, where that expectation captures 

underlying trends in population growth and intrinsic differences in disease and pollution 

environments.  

3.4 Empirical Approach 

The starting point for our analysis is: 

𝑦𝑖𝑏𝑐 = 𝛼0 + 𝛽𝑏 + 𝛾𝑐 + 𝛿1[𝑦𝑜𝑏 = 1919] × 𝐹𝑙𝑢𝑐 + 𝜖𝑖𝑏𝑐    [4] 

where yibc is either a background characteristic or a long-run outcome y of individual i from birth 

year b in birth city c. The parameters b and c are birth year and birth city fixed effects, 

respectively. The variable Fluc measures pandemic intensity in city in c 1918. Our main measure is 

the ratio of total influenza deaths relative to expected influenza deaths, which we normalize by 

                                                 
16We only run these regressions for the 287 cities that appear in every report. 
17The natural logarithm ensures that predicted influenza deaths are always greater than zero. 
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dividing by the sample mean (36.42).18 This normalization allows coefficients to be interpreted as 

the average effect of pandemic exposure. 

The identifying assumption is that in the absence of the pandemic, changes in outcomes 

among cohorts with high exposure would have looked similar to what we observe among cohorts 

with low exposure. This assumption is not testable. However, it is common to use a generalized 

difference-in-differences or “event study” design to see if there are meaningful deviations prior to 

treatment.  

Figure 3 presents estimates with 1917 as the omitted period. Relative to this omitted group, 

the only coefficient that is statistically different is the coefficient for the 1919 birth cohort. That 

coefficient is also the most negative. The second most negative coefficient corresponds to the 1918 

birth cohort, and importantly the 1919 and 1918 estimates are statistically equal. However, the 

1918 cohort is not a clear placebo cohort as anyone born between October and December of 1918 

may have been exposed to the pandemic during the final trimester.  

3.5 Assessing Family Selection 

Table 6 examines whether background characteristics were measurably different for 

treated cohorts in the linked data. We draw on the same comprehensive background characteristics 

used in the previous section. Each row corresponds to a different characteristic. We present results 

from two samples. Columns 1 and 2 correspond to a wide set of cohorts (1912-1919), with column 

1 reporting the sample mean and standard deviation and column 2 corresponding to the result from 

estimating equation (2). Columns 3 and 4 mirror this organization but for only the 1918 and 1919 

birth cohorts. When we turn to our long-run estimates this restriction limits the set of observable 

                                                 
18Fluc is an annual measure. A more flexible estimation strategy would involve obtaining monthly or quarterly data 

and applying a variation of this strategy that more precisely leverages the timing of exposure. This type of approach 

would also require month of birth information, which is available for some of the cohorts that we observe in 1920, but 

is often missing and contains heaping on 6 months, which raises questions about the quality of that variable. 
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and unobservable differences that may confound our estimates, but it is somewhat conservative in 

its ability to isolate the effect of in utero exposure since individuals born in the final months of 

1918 were also exposed to the pandemic while in utero. 

Table 6 provides evidence that the dose-response framework offers a more credible 

identification strategy when considering bias from parental selection. Relative to Table 2, the 

estimates are largely statistically insignificant and the point estimates are often smaller. Applying 

the cross-cohort strategy to our 1920 sample indicates that 13 of the 15 estimated deviations for the 

1919 birth cohort were significant at the 5% level or lower (BFS, 2021). In the dose-response 

framework (column 2), the only deviation that is significant at the 5% level or lower relates to the 

number of older siblings in the household. In terms of magnitudes, the cross-cohort estimates 

indicated that the 1919 birth cohort had 0.15 more older siblings. Our dose-response estimates 

indicate that, in the average pandemic city, members of the 1919 cohort had 0.05 more older 

siblings.  

3.6 Long-run Estimates 

Table 7 uses our dose-response framework to examine the impact of pandemic intensity on 

educational attainment. Each row corresponds to a different outcome variable: total years of 

schooling and an indicator for graduating high school. Columns 1 and 2 examine patterns among 

the 1912-1919 birth cohorts. Columns 3 and 4 focus on just the 1918 and 1919 birth cohorts, where 

we expect the set of observed and unobserved differences to be more limited, while columns 5 and 

6 focus on our brothers subsample. Our baseline estimates are presented in columns 1, 3, and 4. 

Columns 2 and 4 add the same parental controls that were included in our preferred cross-cohort 

regressions, while column 6 goes further and includes household fixed effects. The results in Table 

7 point to a negative relationship between in-utero exposure to the pandemic and educational 
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attainment.  

Relative to the cross-cohort results, there is less evidence that the dose-response results are 

driven by parental selection. Our baseline estimates suggest that, relative to exposure between the 

ages of 0 and 8, an individual born in 1919 with the average level of pandemic exposure would be 

about 1.7 percentage points less likely to complete high school. Including our background controls 

reduces the point estimate to 1.3 percentage points, but the effects are statistically 

indistinguishable. In column 4, we restrict our comparison to the 1918 and 1919 birth cohorts, and 

thus try to isolate the in-utero effect by making comparisons with individuals that were exposed 

somewhere between the last trimester of the in utero period and age 1. These estimates indicate 

that in utero exposure lowered high school graduation rates by 1.1 percentage points. Once we 

adjust for background differences, the point estimate falls to 0.9 percentage points and is only 

significant at the 10% level, but the two effects are statistically indistinguishable. In our brothers 

sample, our baseline estimate is that exposed cohorts were 2.3 percentage points less likely to 

complete high school, but once we include household fixed effects and other background controls 

(e.g., birth order and maternal/paternal age when the child was born) the deficit increases to 3.9 

percentage points.  

There are several important limitations to mention with regard to this analysis. The first 

relates to the causal mechanism underpinning the negative estimates. We do not observe whether 

individuals were exposed to influenza. Our best estimate is the intensity of the pandemic, which 

means that it is impossible for us to separate the impact of influenza exposure from stress, price 

fluctuations, or other factors related to the pandemic intensity (see Beach, Clay and Saavedra, 

forthcoming). Second, our sample is not population-representative, as the sample contains no 

women and relatively few non-white individuals, for whom BT report no evidence of negative 
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dose-response effects. Third, due to privacy restrictions, we are not able to follow the enlistees 

after WWII and some may have resumed their education. Fourth, income is not available in the 

WWII records, and even if it were, those incomes would likely not reflect peak mid-career 

earnings. Whether these effects persist in later censuses is an open question that can be 

investigated when those censuses become publicly available. 

 

4. Conclusion 

Almond (2006) reports that, relative to surrounding birth cohorts, the 1919 birth cohort in 

the U.S. attained lower levels of adult SES. Since this birth cohort was in utero during the 1918 

influenza pandemic, this result has been interpreted as evidence of the long-term economic effects 

of in utero exposure to health insults. A key assumption underlying this inference is that the 1919 

birth cohort is exchangeable with surrounding birth cohorts.  

This paper documents that the 1919 birth cohort was born into lower SES environments 

relative to adjacent birth cohorts. We establish that this pattern exists in Almond’s own 1960 

sample, in the 1920 full count census, and a sample of WWII enlistees linked to the 1930 census. 

The surrounding cohorts are not exchangeable, which invalidates the assumptions necessary to 

interpret estimates from the cross-cohort identification strategy as causal. 

Furthermore, the cross-cohort estimates of the 1919 birth cohort gap are overstated when 

background differences are not taken into account. After controlling for observed background 

differences, estimates of the impact of in utero influenza exposure on adult SES are between 20 

and 80% smaller than the unadjusted models. Furthermore, when estimates take into account both 

observed and unobserved background differences by contrasting outcomes of brothers the 
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coefficients are attenuated by around 60% relative to the unadjusted model and are not statistically 

significant. 

The full impact of WWI remains unaccounted for in these regressions. Over and above 

troop deployments, the war and the pandemic also introduced greater uncertainty along with 

elevated levels of stress and reductions in income and food consumption. Exploiting variation by 

quarter of birth, we find that the pattern of adult SES deficits contradicts the interpretation that the 

cross cohort strategy solely captures the impact of in utero exposure during the fall wave of the 

pandemic. Our analysis highlights that cross-cohort comparisons of U.S. birth cohorts fail to 

recover the causal effect of in utero exposure to the 1918 influenza pandemic. 

We then interrogate the dose-response strategy. First, we replicate Almond’s results using 

state-level maternal mortality rates. After correcting data errors, we document 89% of the 

dose-response estimates are not statistically significant and, among those that are significant, more 

indicate an SES advantage rather than a disadvantage of exposure to greater intensity of influenza 

at the state level. We conclude there is no evidence in support of a negative dose-response effect 

when using Almond’s original approach. 

Lastly, we turn to an identification strategy that uses geographic variation in pandemic 

intensity among 287 cities. This is only possible in our linked data set, which allows us to observe 

children during their early childhoods. Thus, relative to most censuses where the finest level of 

geography is state of birth, we observe what is likely the individual’s city of birth (i.e., the place of 

residence as of January 1, 1920). By using geographic variation in influenza, we are able to include 

birth-year fixed effects, which capture any national effect of WWI. We find less evidence that 

city-level pandemic intensity is related to observable paternal characteristics. Using this approach, 

we find that exposure to greater pandemic intensity lowered educational attainment among the 
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male enlistees that were successfully linked to the 1920 census when comparisons are drawn either 

between the 1912-1919 birth cohorts or among brothers in a household fixed effects model. On the 

other hand, when we restrict attention to the 1918-1919 birth cohorts, to help rule out unobserved 

differences across cohorts, none of the estimates is statistically significant.  

Whether fetal health shocks do have long-lasting impacts on SES is an extremely important 

topic for science and policy. In this paper our conclusions are based on the most thorough 

evaluation of this question in the context of the 1918 influenza pandemic in the United States that 

is possible given the data available. As new data and approaches become available, it behooves the 

field to advance the science on this important and timely question.  
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Table 1. Differences in adult SES of 1919 birth cohort relative to surrounding cohorts: Males in 1960 Census 
 

 Born in 1919 

 Relative to 1912-1922 cohorts Relative to cohorts: 

 Almond (2006) Replication 1912-1918s 1915-1918s 

  (1) (2) (3) (4) 

Adult SES indicator     

1. High School Graduate -0.021* -0.021* -0.022* -0.035* 

 (0.005) (0.005) (0.009) (0.014) 

2. Years of Education (completed) -0.150* -0.150* -0.188* -0.211* 

 (0.038) (0.038) (0.063) (0.100) 

3. Total Income ($/month) -573 -551 -531 -1073 

 (295) (288) (491) (784) 

4. Wage Income ($/month) -812* -791* -543 -1435* 

 (261) (254) (445) (717) 

5. Poor (<1.5 times poverty level) 0.010* 0.010* 0.001 -0.003 

 (0.005) (0.005) (0.008) (0.013) 

6. Duncan's Socioeconomic Index -0.640* -0.631* -0.884* -0.592 

 (0.259) (0.260) (0.436) (0.694) 

Observations 114,031 114,032 80,695 51,462 

 

Notes. Estimates of 3 from [1] and robust standard errors in parentheses reported for each dependent variable listed in Adult 

SES indicator column and for each comparison listed in columns (1) through (4). Robust standard errors in parentheses. * 

indicates statistically significant at 5% size of test. All income values in 2005 dollars. 
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Table 2. Estimated deviation of 1919 birth cohort’s background characteristics relative to surrounding cohorts 
 

Data source: 1920 Census 1960 Census 1930-WWII Links 

Cohorts included in comparisons 
1912- 

1919 

1915- 

1919 

1912- 

1922 

1912- 

1919 

1912- 

1922 

1912- 

1919 

 (1) (2) (3) (4) (5) (6) 

Background Characteristic       

Father cannot read or write 0.012* 0.012*   0.004* 0.005* 

 (0.001) (0.001)   (0.001) (0.002) 

Father's Duncan SEI -0.719* -0.561*   -0.455* -0.517* 

 (0.037) (0.059)   (0.081) (0.151) 

Father's occupational income score -0.218* -0.029   -0.194* -0.219* 

 (0.019) (0.031)   (0.040) (0.073) 

Father born outside U.S. 0.011* 0.021* 0.000 0.005 0.006* 0.007* 

 (0.001) (0.001) (0.004) (0.008) (0.002) (0.003) 

Father is second-gen. immigrant -0.003* 0.009*   -0.005* -0.012* 

 (0.001) (0.001)   (0.001) (0.003) 

Nonwhite 0.014* 0.015* 0.013* 0.017* 0.005* 0.007* 

 (0.001) (0.001) (0.003) (0.005) (0.001) (0.001) 

Southern Born 0.027* 0.017* 0.018* 0.030* 0.006* 0.019* 

 (0.001) (0.001) (0.005) (0.009) (0.002) (0.003) 

Family owns home -0.008* -0.008*   -0.000 0.001 

 (0.001) (0.001)   (0.002) (0.003) 

Father's age when child was born 0.387* 0.341*   0.366* 0.410* 

 (0.016) (0.025)   (0.026) (0.047) 

Number older siblings in household 0.160* 0.153*   0.100* 0.101* 

  (0.004) (0.007)   (0.005) (0.009) 

 

Notes. Robust standard errors in parentheses. * indicates statistically significant at 5% size of test. 
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Table 3. Cross-cohort estimates of 1919 birth cohort difference relative to comparison cohorts 

before and after adjusting for background characteristics 

 
  High school graduation Years of education 

  Unadjusted Adjusted Unadjusted Adjusted 

  (1) (2) (3) (4) 

Data Source Cohorts     

I. Measured paternal characteristics from 1960 Census 

1960 Census  1912-1922 -0.021* -0.015* -0.150* -0.093* 

  (0.005) (0.005) (0.038) (0.036) 

      

II. Proxies from 1920 Census for paternal characteristics 

1960 Census  1912-1919 -0.022* -0.013 -0.188* -0.099 

  (0.009) (0.009) (0.063) (0.065) 

      

1970 Census 1912-1919 -0.018* -0.008 -0.169* -0.060 

  (0.005) (0.006) (0.038) (0.040) 

      

1980 Census 1912-1919 -0.012* -0.003 -0.165* -0.046 

  (0.004) (0.005) (0.031) (0.032) 

      

1960 Census 1915-1919 -0.035* -0.024 -0.211* -0.117 

  (0.014) (0.015) (0.100) (0.103) 

      

III. Measured paternal characteristics from 1930 Census 

WWII Enlistees 1912-1922 -0.017* -0.009* -0.094* -0.054* 

  (0.002) (0.001) (0.008) (0.007) 

      

IV. Household fixed effects 

WWII Enlistees 1912-1922 -0.013* -0.005 -0.065* -0.028 

    (0.004) (0.004) (0.019) (0.016) 

 

Notes. Robust standard errors in parentheses. * indicates statistically significant at 5% size of test. 

Background characteristics included in Panel I are race, birthplace fixed effects, father’s country of birth, 

and mother’s country of birth fixed effects. Panel II background characteristics are race and birthplace fixed 

effects and a series of proxies. The proxies are computed are averages by birth state, race and birth year 

averages for the following variables from the 1920 Census: an immigrant father indicator, an immigrant 

mother indicator, a second generation immigrant father indicator, a father moved outside of birthplace 

before child was born indicator, the father’s age when child was born, the mother’s age when child was 

born, the difference between father and mother’s age, an illiterate father indicator, an illiterate mother 

indicator, the father’s occupational income score, a mother is in labor force indicator, a family owns home 

indicator, and birth order. Panel III includes the same set of controls as in Panel II, except the proxies are 

replaced with individual-level measured parental characteristics from the 1930 census. Panel IV replaces 

parental characteristics in panel III with household fixed effects. 
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Table 4. Differences in completed years of education of males in 1919 birth cohort by year of birth 

and by quarter of birth relative to 1915-1918 cohorts 

 
Differences by: A. Year of birth B. Quarter of birth 

 Born in 1919 1919Q1 1919Q2 1919Q3 1919Q4 

  (1) (2) (3) (4) (5) 

Data Source      

1. 1960 Census -0.211* -0.166 -0.226 -0.133 -0.315* 

 (0.100) (0.121) (0.121) (0.122) (0.120) 

2. 1970 Census -0.182* -0.098 -0.151* -0.174* -0.320* 

 (0.061) (0.073) (0.073) (0.073) (0.072) 

3. 1980 Census -0.088 -0.075 -0.083 -0.029 -0.169* 

  (0.049) (0.059) (0.059) (0.059) (0.058) 

 

Notes. Robust standard errors in parentheses. * indicates significant at 5% size of test. Sample sizes 51,462, 

140,082 and 207,318 in 1960, 1970 and 1980 Censuses, respectively. Birth quarter models in columns 

(2)-(5) replace 1919 year of birth cohort indicator in (1) with four 1919 birth quarter indicators. Models in 

panel B include birth quarter fixed effects 
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Table 5. Estimates of relationships between maternal influenza infection rates and adult SES for males, females and non-whites in 1960, 1970 and 

1980 censuses. 
 

  A. Males B. Females C. Non-whites 

Census: 1960 1970 1980 1960 1970 1980 1960 1970 1980 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Adult SES indicator          

1. High school graduate -0.085* 0.015 0.006 0.025 0.030 -0.021 -0.325 -0.052 0.132 

 (0.040) (0.022) (0.019) (0.044) (0.024) (0.017) (0.193) (0.105) (0.081) 

2. Years completed schooling -0.694* 0.407* 0.108 0.049 0.189 -0.078 -0.973 0.535 0.317 

 (0.310) (0.170) (0.103) (0.263) (0.127) (0.107) (1.336) (0.444) (0.565) 

3. Log(total income) -0.162 0.060 -0.065 -0.113 0.051 0.085 0.396 0.011 0.330 

 (0.088) (0.051) (0.041) (0.118) (0.040) (0.052) (0.320) (0.222) (0.238) 

4. Poor (< 1.5x poverty level) 0.031 -0.064* 0.013 0.003 -0.004 -0.022 -0.245 -0.136 0.027 

 (0.032) (0.017) (0.011) (0.034) (0.011) (0.017) (0.200) (0.079) (0.087) 

5. Duncan socioeconomic index -2.336 2.633 -1.386 -2.833 0.729 0.686 -0.865 12.163* -1.768 

 (1.984) (1.671) (1.004) (1.609) (1.033) (0.993) (7.652) (3.378) (3.588) 

Observations 16,659 46,238 71,048 17,164 49,440 80,916 1,866 5,319 8,232 

 

Notes. Standard errors in parentheses clustered at the levels of state and year of birth. * indicates significant at 5% size of test. 

 

  



 

 

Table 6. Assessing whether background differences are related to pandemic intensity in 

WWII-1920 Linked Sample 
 

 1912-1919 Birth Cohorts 1918-1919 Birth Cohorts 

 Mean Std. Flu X Mean Std. Flu X 

 [S.D.] Born in 1919 [S.D.] Born in 1919 

Background Characteristic     

Father cannot read or write 0.052 0.002 0.051 -0.001 

 [0.222] (0.002) [0.221] (0.003) 

Father's Duncan SEI 32.992 -0.288 32.601 -0.339 

 [21.684] (0.195) [21.436] (0.233) 

Father's occupational income score 28.692 -0.169 28.538 -0.206 

 [9.172] (0.093) [9.039] (0.112) 

Father born outside U.S. 0.440 0.002 0.427 -0.000 

 [0.496] (0.004) [0.495] (0.005) 

Father is second-gen. immigrant 0.247 -0.002 0.250 -0.000 

 [0.431] (0.006) [0.433] (0.004) 

Nonwhite 0.028 -0.001 0.030 -0.001 

 [0.164] (0.001) [0.170] (0.001) 

Family owns home 0.306 -0.009 0.267 -0.007 

 [0.461] (0.005) [0.442] (0.005) 

Father's age when child was born 32.108 0.137 32.130 0.105 

 [6.970] (0.127) [6.926] (0.096) 

Number of older siblings in household 2.620 0.049* 2.660 0.040* 

  [1.750] (0.020) [1.790] (0.018) 
 

Notes. Standard errors clustered at the city level in parentheses. * denotes significant at 5% size of test. 
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Table 7. Impact of pandemic intensity on adult outcomes for 1919 birth cohort in WWII-1920 Linked 

Sample 
 

     Brothers Sample 

 1912-1919 Birth Cohorts 1918-1919 Birth Cohorts 1912-1919 Birth Cohorts 

 Unadj. Adj. Unadj. Adj. Unadj. Adj. 
 (1) (2) (3) (4) (5) (6) 
Estimated effect of Std. Excess Flu X Born in 1919   

Dependent variables       

Years of schooling -0.065* -0.045* -0.036 -0.023 -0.072 -0.104* 

 (0.020) (0.017) (0.020) (0.019) (0.049) (0.050) 

      

Graduated high school -0.017* -0.013* -0.011* -0.009 -0.023* -0.039* 

 (0.004) (0.004) (0.005) (0.005) (0.012) (0.012) 

       

Observations 148,550 148,550 56,756 56,756 12,864 12,864 

       

Height 0.036 0.047* -0.013 -0.014 0.106 -0.050 

 (0.021) (0.020) (0.032) (0.038) (0.062) (0.073) 

       

Observations 113,609 113,609 45,831 45,831 7,991 7,991 

 
Notes. Standard errors clustered at the city level in parentheses. * denotes significant at 5% size of test. Adjusted 

specifications include the same background controls described in the note to Table 3 for Panels III and IV. 
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Figure 1. Monthly overseas troop deployments and influenza deaths, April 1917-October 1919 

 

 

 

Notes. Troop data from Ayers (1919). Influenza deaths from Bureau of Census (1919, 1920, 

1921). 
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Figure 2. Own years of education and paternal characteristics by birth cohort 

 

 

 

Notes. Panel A uses a 1% sample of native-born U.S. males in the 1960 census. Panels B, C, and D 

use fathers of children born in the U.S. in 1912 through 1919 as reported in the 1920 full count 

census. 
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Figure 3. Event study estimates of the impact of pandemic exposure on high school completion 

 

 

 

Notes. Regression estimates and 95% confidence intervals from models that include city of 

enumeration and birth year fixed effects as well as background controls listed in Table 3. Standard 

errors are clustered at the city level.  
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